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The problem of the free and forced quasilinear spatial vibrations of a string is investigated in the single-mode approximation of 
wave processes. A mathematical model is constructed in which geometric non-linearity, caused by the linear extensibility of a 
string, is the major soutrce of non-linearity. As a result, the tension turns out to be variable both with respect to time and length. 
An asymptotic analysis of the free vibrations is carried out and the phenomenon of the instability of plane vibrations is investigated. 
The resonance curves corresponding to a plane harmonic excitation are constructed in terms of the system parameters and analysed. 
The stability of steady vibrations is completely investigated using Lyapunov's first method. Qualitative effects, associated with 
the stability and instability of plane and spatial forced vibrations, are detected and studied within the framework of the spatial 
model. © 1996 Elsevier Science Ltd. All fights reserved. 

Experiments on flee and forced vibrations of a string damped at both ends demonstrate phenomena 
that are of a non-llinear nature and cannot be explained using a linear model. The extensibility of the 
string material, which is neglected in the standard formulation of the problem on the transverse vibrations 
of a string [1-3], ]is one of the principal sources of non-linear effects. Furthermore, the tension in a 
string is usually assumed to be constant at all points [4-6, 8] (Kirchhoff's hypothesis) and in time [1-3]. 

According to a number of preliminary theoretical and experimental results which take account of  
non-linear effects [4--8], the spatial pattern of free and forced vibrations turns out to be rather complex. 
It requires the application of rigorous methods of non-linear mechanics to construct adequate mathe- 
matical models, to build systems of vibrations and to analyse their stability. In the single-mode quasilinear 
treatment of wave processes in a string which is considered below, the use of  small-parameter methods 
(Lyapunov-Poincar6 [9] and averaging [10, 11]) proves to be quite effective. 

1. We shall con,;truct a mathematical model of the non-linear vibrations of  a string taking account 
of the variability of its length due to the extensibility of the string and the variability of  the tension [4-7]. 
We introduce an inertial system of Cartesian coordinatesxyz and assume that, when there are no trans- 
verse displacements, the string is kept under tension by a force T and damped  at the points x = 0, 1. 
Le t  y = y(x,  t), z = z(x, t) be the transverse displacements of the points of  the string with the Eulerian 
coordinate x, 0 ~< x ~< l. We calculate the elongation dA of an infinitesimal element dx accompanying 
its orthogonal displacements y, z from the equilibrium position y = z = 0. For the stretched element, 
when account is taken of the extensibility of the string material, we have the expression ds = (1 + h2)~2dx, 
where h 2 = y,Z + z,2and derivatives with respect to x are denoted by primes. The required elongation 
dA =- ds - d x  = ~dx and the expression for the coefficient ~. can be represented by a series which converges 
when h 2 < 1 

(1.1) 

Actually, expansion (1.1) for ~. is usually truncated after the first term. When account is taken of the 
extensibility, the total tension of the string T* will depend on the point x and the time t 

T * = T + E S d A / d x = T + L E S ,  T*> T (1.2) 

Here, E is Young's modulus of the material and S is the area of cross-section of the string fibre. Hence, 
E S  is the tensile st:iffness and formula (1.2) reflects Hooke's  law. 
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We now calculate the elementary work dA for the stretching and the total potential energy U of the 
string due to the transverse displacements y(x, t), z(x, t) [5, 7]. 

dA = dAr + dA r, dAr =-TLdx,  dAr = -  p~ ESk2dx 

l l 

u =-J aa = f efh2  (1.3) 
o 0 

P -  T'A.+~ESk 2 =Th 2 / 2 + N h 4 / 8 - N h  6/16+ .... N = E S - T  

Assuming that the magnitude ofh 2 is sufficiently small, we can confme ourselves to terms up to O(h 4) 
in (1.3) and discard the O(h 6) terms. The coefficient N > 0 for elastic systems with a stiff characteristic. 
Moreover, in the case of metal strings (steel strings, in particular), the strong inequality ES >> T is satisfied 
and, usually, ES/T  ~ 10 z. We now write down the expressions for the kinetic energy K of the transverse 
displacements of the elements of the string and the work W done by the external distributed forces 
FY~(x, t) 

I 
K=~! (~,2+z2)dx, W = !  (F'y+FZz)dx (1.4) 

Here, p is the linear density of the string which, for simplicity, is assumed to be constant, and 
differentiation with respect to time is indicated by a dot. The equations of the vibrations are obtained 
using the Ostrogradskii-Hamilton variational principle for the Lagrangian function L = K - U - FYy 
- FZz [1, 2, 5, 8]. When account is taken of the boundary conditions and the initial distributions of the 
y, z-displacements and the velocities y, ~, we obtain 

p~,=Ty"+N[(y '2 +~h2)y"+y'z'z"]+F v 

N r , v - z , + ' :  r p~ = Tz" + [y. (1.5) 

y(O,t)= y(l,t)=O, z(O,t)= z(l , t)=O 

y(x,0) = dY(x), ~(x,0)= gY(x) 

z(x,O)=dZ(x),  ~(x,O)=gZ(x) 

It is difficult to investigate the non-linear initial-boundary-value problem (1.5) in an exact formulation. 
An approach is proposed which is based on the so-called single-mode approximation [4-8]. The solution 
y(x, t), z(x, t) is constructed in the form of the series 

y(x , t )= an(t)singn 7 ,  z(x , t )= bm(t)sinron x (1.6) 
n=!  m=l  l 

which automatically satisfy the zero boundary conditions. The system of functions {sin nnFlx} is complete 
[x e [0,/]) and these functions will be eigenfunctions if one neglects non-linearities, and, hence, after 
substituting series (1.6) into (1.5), expanding the functionsF y'z for this system and equating the Fourier 
coefficients of like harmonies, we obtain two coupled denumerable systems of equations for an(t), bin(t). 
The coupling is due to a cubic non-linearity which is assumed to be fairly weak as a consequence of 
the smallness of the amplitudes of the partial vibrations. This is achieved by the choice of the distributions 
for F y'z(x, t) and d y' Z(x), gY' Z(x) which only contain the mode under consideration with number k (n = 
m = k). In practice, the fundamental mode of vibration k = 1 is usually implemented. 

Thus, we set the harmonics FY(t) = FZ(t) =- 0, d~ z = g~Z = 0 when n, m ~ k and the effect of the 
other modes on the kth mode may then be considered to be insignificant and, instead of the series (1.6), 
we take representations of the form 
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y( x, t) = a k ( t ) sin rckl-t x, z( x, t) = b k ( t ) sin ltkl-l x (1.7) 

Substitution of expressions (1.7) into the Lagrangian L enables us to obtain its single-mode approxi- 
mation in which aj:, bk are generalized coordinates. The Lagrangian equations of motion are reduced 
to the form of a system which describes the motion of a plane oscillator with a cubic non-linearity. We 
now formulate the Cauchy problem 

l it +tO2a, + yk(a 2 +b2)ak = f~( t )  

bk +tO2bk +Yk( a2 +b2)b* = f~(t), t>-O (1.8) 

ak(O)=d~', hk(O)=g~', bk(0)=d ~, bk(0)=g~ 

tOt= -if' v*=gvTa 7' g,"(t)= p(t) 

Equations (1.8) and the corresponding initial conditions can also be derived from the initial-boundary- 
value problem (1.5) using the Fourier method. We note that, when the Kirchhoff hypothesis is satisfied 
[4, 6, 8], the relation between the different modes of vibration will be parametric, that is, for each mode 
the cubic non-linearity leads to the expressions Zk(an, bm)ai, Zk(bm, an)bk, where Z k are series of all an, 
bm. The  zero initial conditions and the absence of excitation of the corresponding modes will lead to 
the trivial solution.s, an =- O, bm =- O. Moreover, Kirchhoff's hypothesis leads to constancy of the tension 
throughout the length of the string (but not in time). 

A system with two degrees of freedom (1.8) is next investigated with various assumptions regarding 
the parameters, the initial conditions and the external disturbance. The theoretical and applied aspects 
of the formulation of problems of the free vibrations (fk a' b _= 0) and the steady forced vibrations caused 
by a harmonic excitation (fk = f cos D.t), that is, the so-called resonance or amplitude-frequency 
characteristics, are of interest. Since the value of k is fixed (to be specific, the fundamental mode of 
vibration k = 1 is considered), the subscript k is omitted for brevity and the more convenient notation 
a °, a °, b °, b ° is adopted for the initial values. 

Together with the issue of the existence and the construction of the solutions, the investigation of 
their stability proves to be important in practice. We note that system (1.8) can be represented in 
canonical Hamiltonian form (a = Pa, b = Pb are momenta). 

2. ANALYSIS OF THE FREE VIBRATIONS OF A STRING 

We will now consider the Cauchy problem (1.8) when f "  b(t) - 0 and introduce the dimensionless 
time t*, normalized variables a*, b* and the parameter e as follows (the asterisk is henceforth omitted): 

t* = tOt, a* = ado I, b* = bdo 1 , e = "~,o-2d 2 

(2.1) 

a + a + e ( a  2+b2)a=0 ,  b + b + e ( a  2 + b 2 ) b = 0  

Here, d o is the scale of the change in a and b for which the cubic terms turn out to be small and the 
quantities a*, b* ^- 1. This scale is specified by the choice of the initial quantities a °, a °, b °, b °. 

We note that system (2.1) has both the solution a(t) =- 0 and the solution b(t) -~ O. System (2.1) can 
be integrated for arbitrary values of the parameter e. It admits of two elementary integrals, an "energy" 
integral E and an "angular momentum" integral C (an "area integral"). Further integration leads to 
elliptic functions. It is more convenient to carry out the analytical integration procedure in polar 
coordinates r, cp by means of the substitution a = r sin 9, b = r cos 9. As a result, we obtain 

E =  l/2i'E + l/2rE(l +(p2)+ l/4Er4 , C= rE(p 

t - t o = +  i a t  r d~ 
r" /' ~2x)(~) (2.2) 

x~(r) = r -I (2Er 2 - r 4 - }62 8r 6 - c 2  )J~2 
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The range of the change in the radius vector r is determined by the roots of the equation a)(r) = 0 
and, in the general case, there are two such quantities rmm(E, C) and rmax(E, C). There are two degenerate 
modes of motion. The vibrations along the straight line (C = 0, that is, q~ = 0), which intersects the 
origin of coordinates, occur within the limits rmin(E, 0) = 0, rma~(E, 0) = e-x/2[(1 + 4eE) v2 - 1] acz. In 
the case of motion along a circle r0 = rmin(E, C) = rmax(E, C), the value of r0 is a root of the equation 
r 4 + 0 .6 = C 2 subject to the condition 2E = r 2 + C2rff 2 + 1/20. 4 and, as a result 

r o =ro(E)=(2l(3e))~[(l+ 3eE)Y2 -1] ~,  C~:Co(E)=+_r2(l+er2) ~ 

A complete analysis of the motion on the basis of expressions (2.2) requires extremely tedious 
calculations which are unjustified in the case of the small values of e being considered here. It is more 
constructive to present an asymptotic analysis of the quasilinear oscillations of system (2.1) using the 
method of averaging [10, 11]. The change to a system in the standard form can be achieved by several 
methods such as, for example, by introducing new "amplitude-phase" variables, an "amplitude-phase 
detuning" or by changing to osculating variables of the Van der Pol type [10], and so on. Each of these 
substitutions has certain advantages and disadvantages. The choice must be dictated by the mechanical 
content and by clarity. In the case of systems of the type (2.1), it is preferable to take the slow variables 
of "amplitude-phase detuning" [7] 

a=acos(t+ct), b=Bcos(t+~), a=Oa/Ot, b=Ob/bt (2.3) 

Here, A and B are amplitudes; and ct and 13 are the phase corrections of the partial oscillations. In 
the first approximation of the method of averaging, one obtains the equations 

,4=-AB2sin2fi ,  B= A2Bsin2~, 8=~-Ot 

ot = 3A 2 + 2B 2 + B 2 cos 2~i, 13 = 2A2 + A2 cos 2~5 + 3B 2 

(2.4) 

forA, B, a, [3. 
In (2.4) and subsequently, derivatives with respect to the "slow time" x = et/8, x - 1 are denoted by 

dots. The initial values of the variables are determined using (2.3). 
The integrals (2.2) take the form 

A 2 +B 2 =2E,  ABsin~=-C 

It follows from the equation for ~ which is obtained from (2.4): ~= -2(.4 2 - B2)sin2~, that motion 
along a line (in "phase" and in "antiphase") corresponds to the stationary points 5" = 0, n. The value 

= +_1t/2(C = -T-E) corresponds to motion along a circleA = B = E v2. Note that the quantities being 
considered differ from the exact quantities by O(e) for t - 1/e. B(x) = const corresponds to the particular 
solutionA(x) - 0 of system (2.1) whereas -B(x) =-- 0 corresponds toA(x) = const. 

Expressions forA, B and ~5 are found using elementary functions [7] 

A 2, B 2 = E-I- Dcos(4Cx + O), sin ~ = -C(AB) -~ 

D = (E 2 - C 2)~2, 0 ~< D <~ E, 0 = const (2.5) 

For motion along a circle, D = 0, that is, E = I C I while, in the case of vibrations along a straight 
line, D = E (C = 0) and, then, ~ = _+ ~/2 or ~ = 0, respectively. It also follows from (2.5) that the 
amplitudesA and B v a ~  within the limits from (E - D) 1/2 to (E + D) 1/2. Using expressions (2.5) which 
have been found, for 6q [3 we obtain explicit representations in terms of x which are integrated in terms 
of elementary functions 

= 6 E -  2C2A -2, ~ = 6 E -  2C2B -2 

(x, IB = a°,[$ ° + 6 E x -  Arctg[(E :g D)C-'tg(2Cx +012)]+ arctg[(E-T- D)C-'  tgOt2] (2.6) 

(dc)=([3)=6E-21CI, cc°=ot(0), 13°:[~(0) 
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Thus, the approximate expressions for the variables a and b are constructed in accordance with (2.3), 
(2.5) and (2.6). The main properties of the motion have been found. We also mention a rather important 
fact. It follows from (2.5) that plane motions (C = 0) are unstable in the following sense. The presence 
of a I C I ~> e > 0 which may be as small as desired, will lead to a state where, during the process of 
evolution, the "pl{ane of  vibrations" will turn and, according to (2.5), the string will perform rapid 
oscillations in an arbitrary plane. The dimensionless time for the rotation of the plane by an angle of 
~/2, that corresponds to the rotation of the phase by an angle of n, has a magnitude At = 2n(eC) -1. 
For small I C I, the trajectory a, b of system (2.1), apart from a quantity e ~ I C I, is a very prolate 
ellipse with major' and minor axes (E + D) 1/2 and (E - D) 1/2, respectively 

(E+  D) ~ = (2E)~(I  + ~2/8+0(1¢4)),  ~¢2 = C2E-2 

( E -  D) ~ = ( E / 2 ) ) ~ l r l ( l - ~ : 2 / 8 + O ( r 4 ) ) ,  I~:1 ,~ 1 

It can be shown that, a for a fixed x, relations (2.3) and (2.5) define a rotated ellipse with constant 
semi-axes (E + D) 1/2 and (E - D) 1/2. The axes of the ellipse slowly rotate at a velocity eC/4. These 
properties follow ,directly from expressions (2.3) and (2.5) after the fast time t has been eliminated and 
they have been reduced to the form 

a2 A -2 + b2 B -2 - 2aA-lbB -~ cos~i = sin 2 ~ (2.7) 

In spite of the fact that the parametersA, B and ~i in (2.7) are functions of x, the semi-axes turn out 
to be constant arid equal to the values shown above in the rotating system of coordinates which 
corresponds to the canonical form of the ellipse. 

Hence, motions with different velocity scales are observed in the system. In the first place, these are 
rapid vibratory motions with a velocity O(1). Secondly, when I C I - 1 E - 1, an evolution of the axes 
of the ellipse occurs with a velocity O(e). If e ~< I C I ~< E - 1, then there are three scales: with velocities 
of O(1), O (I C I) and O (el C I). It is interesting to note that the velocity of rotation of  the plane i n the 
slow time x is equal to 2C (rather than 4C, see (2.5)). 

Experimental observations of the free vibrations of a string require an extremely high precision and 
selectivity as well as a high accuracy in specifying the initial values. The presence of perturbing factors 
under real conditions leads to the need to employ "resonance methods" which are less subject to the 
effect of the abow~-mentioned perturbations [4-6]. 

3. C O N S T R U C T I O N  AND A N A L Y S I S  OF T H E  F O R C E D  S T E A D Y  
V I B R A T I O N S  OF A S T R I N G  

3.1. Preliminary transformations 
Interesting properties of the spatial and plane vibrations of a string are also revealed in the case of  a 
periodic excitation. Let an external disturbance occur in a certain fixed plane which passes through the 
line of the undeformed string. Without any loss of generality, we shall assume thatff( t )  ~ O , f ( t )  =- 0 
and consider a harmonic exitationff(t) = f cos  f~ t. As in Section 2, we introduce dimensionless variables 
and parameters as. follows (the subscript k is omitted) 

t*=o~t, a* =ado  1, b*=bd~ l, ~t=f~to -t (3.1) 

e~---'~[JI)-2d0 2, D- l ,  emf(l)-2do I, 0<E':~ ! 

Henceforth, the asterisk is omitted for brevity. 
As a result of the transformations (3.1), a quasilinear vibratory system with weak coupling between 

the subsystems is obtained from (1.8) 

/ i + a  +£~(a 2 +b2)a  = ecoslxt 

b + b + £[~(a 2 +b2)b  = 0  (3.2) 

The problem of constructing and investigating the steady-state forced vibrations of system (3.2) in 
the neighbourhood of the main resonance ~t -~ 1 is formulated. Here, the initial value of the variables 
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are not specified. They are determined when solving the problem and can be chosen from a certain 
sufficiently small neighbourhood of  these values [9-11]. 

The problem of the existence, construction and investigation of the stability of the periodic motions 
of system (3.2) can be solved using the well-developed and well-founded Lyapunov-Poincar6 methods 
[9]. In order to investigate the dependence of the amplitudes of the partial vibrations on the frequency 
it is more convenient to change to variables of the "amplitude-phase detuning" type, analogous to (2.3), 
using the formulae 

a = Acos(ixt+0), ti =3alOt 

(3.3) 
b = Bcos(ixt + y) ,  [~=3b/Ot 

Here, we shall assume that the (relative) frequency Ix of the external disturbance lies in an e- 
neighbourhood of the main resonance IX = 1 + e~., where ~. - 1. By virtue of the perturbation of system 
(3.2), the variables A, B, 0, y will then be slow. System (3.2) is reduced to the standard Bogolyubov 
form [10, 11]: ~ = eX(~, x), where x is the vector of the indicated osculating variables andXis  a periodic 
function of t which is smooth when A > 0. In the case of a standard system, the issue of the existence 
and the approximate construction of a periodic solutionx = x(lxt, e) reduces to investigating the existence 
and uniqueness (non-degeneracy) of the stationary point ~* which corresponds to the averaged system 
~ = X0(~), where Xo(x) is the mean of X ( ~ ,  x) with respect to t. The sufficient conditions reduce to the 
following relations 

~* =argXo(~), det X~(~');~O (3.4) 

The desired periodic solutionx then has the formx(~,  e) = ~* + E~0(~, e), where the periodic function 
is constructed by quadratures from known functions using the method of  successive approximations 

[9, 101. 
In the case of the variablesA, B, 0, ~, the averaged system in the slow time x = et has the form (for 

averaged variables the previous notation is retained) 

,~i = - ~ sin 0 - (6 / 8) AB2 sin 28 

/~=(~/8)A2Bsin28,  8 = ~ - 0  

~) = _~._ ~ A  -I cos0+(3~ /8 )A 2 + (~ / 4)B2(1 + ~cos28)  

=-~. +(~14)A 2(l + ~cos28)+ (3~18)B 2 

(3.5) 

Note that system (3.5) does not have a Hamiltonian form. However, a transformation from the 
variablesA, B, 0, ¥ to variables of the Van der Pol type enables one to obtain an averaged Hamiltonian 
system. This is equivalent to replacing a, a, b, b by the Van der Pol variables in the initial system (3.2) 
and subsequent averaging with respect to t (see (4.2)). 

System (3.5) allows of a set of stationary points which correspond to the different modes of vibration. 
We shall now consider them. 

3.2. Plane steady vibrations 
These are defined by the relations (see (3.4)) 

k=-T-~A-!+(3~/8)A 2, A>0,  B = 0 ,  0 = 0 ,  (3.6) 

- -  w- The amplitude of the vertical vibrationsA0 - A 0(~., 13) is found as the root of a cubic equation. An 
analytical solution is an extremely time-consuming problem. The graphical construction of the family 
of functionsA ~(~., 13) is quite elementary if the inverse function k(A, 13) is constructed according to (3.6). 
Such a solution when I~ = 1 is shown in Fig. 1. The unique branch A~(L, I~), which is defined for all ~. 

(--,o, oo) where [~ > 0 is a parameter, corresponds to "in-phase" vibrations (0 = 0), that is, the minus 
sign in (3.6). This branch increases monotonically with respect to ~.. When ~. = 0, the value A~(0, 13) = 

, 1/3 ~ , * 2  3 A 0 = (4/(313)) is obtained for A~. When I ~ I ~ 1, the expansion A~) = A 0 + (2~/3)A0 + O(I ~ I ) 
holds forA~(~., I~), that is, Z = 0 is a point of inflection (see Section 3.3). The asymptotic behaviour is 
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A,B 

Z 

tt 
0 Z ,~ 

Fig. 1. 

described by the expressions:A~(L, 6) = -(27L) -1 - (31]/4)(27L) -4 + O(I ~ 1-7) when ~, ~ -oo. For a positive 
frequency detuning we haveA~(2L, [3) = (8X/(313)) 1/2 + (4~,) -1 + O(~, -2) when ~, ---> +o.. In the expressions 
which have been presented the parameter I~ - 1 (13 > 0). The case when 13 ---) 0 leads to a linear oscillator: 
A~(~,, 13) = -(2~) -1 - (3~1/4)(2~,) --4 + O(132), where ~, < 0 and, when I~ ---> oo for ~, - 1, we obtain the 
asymptotic formA~(~,, 13) = (4/313) 1/3 + (2L/3(4/(313)) 2/3 + O(1~-1). 

We will now consider the "antiphase" vibrations (0 = x) to which the plus sign in relation (3.6) 
corresponds. The curve A~(~L, 13) is defined for ~, I> X0 = (3/4)(36/2) 1/3 and, moreover, A~(~,, 15) = 
(2/(31~)) 1~. When L > X0, it has two branches: a falling branchA~l and a rising branchA~2 (when ~ 
**). The two curves join smoothly at the point k = X0 at which the tangent to the line is vertical. The 
asymptotic behaviour of the following curve A ~1 as ~, ~ oo is analogous to the behaviour of A~ as 

+ --1 -4 7 X --> -00, that is, we have A 01 = (2X)- + (313/4)(22L) + O(L- ). In a similar manner, for the rising 
+ + 1/2 1 3/2 branchA o2 we have the approximate expressionA o2 = (8L/(313)) - (42L)- + O(X- ). It follows from 

+ 1 3/2 the representations which have been obtained thatA~+-Ao2 = (2X)- + O(~- ) ---) 0 when ~, ---> .o and, 
for the falling part of the curve A~ and the branch A 01, we similarly obtain a faster descent A~(-X, I~) 
-A~I(X, 13) = -(3D/2)(2L)-4 + O(Tv 7) as X --> ~. 

We will now consider the asymptotic form of A ~ with respect to the parameter 13. As 13 ~ 0, the 
asymptotic fo rmA~ = (22L) -1 + (313/4)(2~.)-4 + O(1~2), 2L > 0 holds. If 13 --> oo, then the values 2L I> X0 
= (3/4)(313/2) 1/3 ---> o. and the expansions forA+0 will therefore depend on the estimates X = X(l~), in 
a class of power series, for example. Let X = A[31/3, where the constant A > (3/4)(3/2) 1/3. Then, the 
est imateA~ = ~*1] -lt3 where ~* is the positive root of the equation ~3 _ (8/3)A~ - 4/3 = 0. If 2L = AI~ v, 
1/3 < v < 1, then the approximate expressionA~ = ~13 -1/3, where ~ = 4/(32) + (4/(3X)) 3 + O(X -5) and 
the magnitude of Z = (8/3)A~ v-1/3 ---> oo as 13 ---> oo. Let v = 1, then we have two asymptotic forms; an 
asymptotic formA 31 = (2AI~) -1 + (3/(8A))(2AI3) -3 + O(13 -5) which decreases without limit and a finite 
asymptotic formA~ 2 = ~: + [.ta m + ~L2a2 + O(~ 3) where the magnitude of the parameter ~: = (8A/3) 1/2 
is of the order 1 of lmity with respect of ~ ---> 0% p = (2A13)- is a small parameter and the expansion 
coefficients a I = -1/2K -2, a2 = -3/(8KS), and so on. Finally, when v > 1, the asymptotic form 
A ' ~  = (2Al3V) -1 + (3/64)A-413 --4v+1 + O(~ -2v+2) is obtained as 13 ~ o o .  

In practice, the l~assibility of obtaining plane vibrations is determined by their stability, the investigation 
of which is postponed until Section 4. 

3.3. Steady spatial vibrations 
We now consider the general case when A, B > 0. The system of spatial vibrations is determined by 
the relations (see (3.4)) 
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0 = 0 ,  r~; ),,=-T-(2A)-1+(31518)A2+(1]/8)B 2, 1 ] > 0  

(3.7) 

~ = + n / 2 ;  ~,=(1]I8)A2 +(3~I8)B 2, I~,1<~, 

The signs -T- in the first equation of (3.7) for A, B correspond to the values 0 = 0, r~, respectively, 
and do not depend on the signs of ~ = +~/2. When B = 0, this equation determines the amplitudeA~ 
(~,, 15) investigated above. We eliminate B ~ > 0 from it using the second equation and obtain relations 
which are convenient in the subsequent analysis 

= T-3(4A) -~ + (15 / 2)A 2 , B = [q:2(~A) -~. + A 2 ]~  (3.8) 

Formulae (3.8) enable us to construct a graphical solution A(~,, 15), B(~,, 15) as in Section 3.2 
without determining the roots of the cubic equation inA. It follows from (3.8) that the case of spatial 
vibrations corresponds to a higher equivalent stiffness of the non-linear characteristic and a greater 
amplitude of the external disturbance (since 1/2 > 3/8 and 3/4 > 1/2, respectively, see (3.6)). The 
analysis of the family of curves A~-(~,, 13) is analogous to the analysis carried out above in the case 
o fA 0(k, 1]). The family of curves B~-(k, [~) is analogous to the analysis carried out above in the case of 
A~(E, 15). The family of curves B~(~,, 1]) can be investigated using the second formula of (3.8) and the 
asymptotic form of the expressions A ~-(~,, 1]). 

We will first consider the case when 0 = 0 ("in-phase" vibrations) which corresponds to the minus 
sign in (3.8). The family of curves A-(~,, [I) is a monotonically increasing function ~,, ~, e ( -~ ,  00) 
for a fixed 1]> 0. These curves intersect the ordinate axis (~, = 0), taking the values A°(1]) = A-(0, 
15) = (3/(213)) 1/3. The expansions 

A- (~,,1]) = -3(4k)  -~ - ([I / (2~,)) (3 / (4~.)) ~ + O(I ~,1-7 ), ~, ---> -0,  

(3.9) 

A- (~., 1]) = (2~. / 1]))~ + 3(82~) -~ + O(~. -2 ), ~. --~ +00 

hold for asymptotically large values of  ] ~ ]. 
0 02 It is interesting to note that, for small I ~. I, the approximate expressionA-(7~, 13) = A (15) + (4/9)ZA (13) 

3 + O(~. ) holds forA-(~., 1]), that is, each curve of the family has zero curvature (a point of inflection) 
at the point 2~ = 0. The case when 13 = 0 leads to a linear oscillator. When ~ ,~ 1, we obtain the estimate 
(3.9) corresponding to ~, < 0. However, the error in 13 will be O(152) (see above, the case of 
plane vibrations). The asymptotic form of A-  with respect to 13, as 13 ---> ~, ~, - 1, is given byA-(k,  1~) 
= (3/(215)) v3 + (4L/9)(3/(215)) 2/3 + O(15-1). 

We will now consider expression (3.8) for B = B- which corresponds to the minus sign (0 = 0). It 
follows from it that vibrations along the z-axis occur at quite large values of A, that is, of the frequency 
detuning ~,. Actually, B 2 > 0 if A-  > (2/1]) 1/3 which is possible for sufficiently large k: Z, > ~,* = 

1/3 , (1/4)(15/2) . It follows from (3.6) thatA~(k , 15) = A-  (A*, 1]), that is, the point ~, = ~,* is a critical point 
and vibrations corresponding to two modes are possible at this point. As ~, increases (L > k*), either 
plane (B = 0) or spatial vibrations will occur which is determined by their stability. (For the solution 
of  this problem, see Section 4.) Spatial vibrations are therefore impossible (B 2 < 0) when ~, < ~,*, and 
the asymptotic forms (3.9) obtained above fo rA-  as ~, ---> - ~  and the expansion with respect to small I 
~, I, ~, < 0 do not correspond to reality. When E > k* is increased, the curve B-(k, 15) grows quite rapidly 
and, furthermore, the derivative of B- with respect to ~, at the point ~, = ~,* + 0 is infinite, since the 

112 , 172 asymptotic form B-(~,, 15) = (24/(1115)) (~, - ~ ) holds for B-. According to (3.8), (3.9), the approximate 
1/2 1 2 expression B-(~,, 1]) = (2L/15) + (8~,)- + O(~,- ) holds for B- as ~, ---> oo. By analogy with the case 

considered above for A ~(~,, 1]), the asymptotic form B-(~,, 15) with respect to 13, 15 ---> ~ is obtained in 
the class of power relations (see below). For values of 1] "~ 1, E - 1, the curve of B- is described using 
(3.8), (3.9) in a similar manner to A-  by the expression B-(~,, 15) = (2k/1]) 1/2 - (8~,) -1 + O(13) ---> ~ as 
15 ---> 0. The approximate expressions forA- and B- show thatA- > 1]- which is confirmed by calculations 
(see Fig. 1). 

We will now consider the behaviour of the family of resonance curvesA+(~,, [I), 15+(X, 15) which are 
defined by relations (3.8) (with the plus sign). They correspond to spatial vibrations when (0"= n) (in 
"antiphase") and ~g = _.+n/2. The curvesA +, B + consist of two branchesA-~, 2, B~, 2which smoothly join 
at the cuspidal point ~,, = (9/8)(41]/3) 1/3 > ~ = (3/4)(31]/2) 1/3. The corresponding values are A +, = 
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(3/(413)) y3 > A~ = (2/(313)) 1/3, B.  +. Moreover, the tangents to these curves at the cuspidal point are vertical 
(as for A ~(~0, 13)). The branches of the curve A ÷ are extremely similar to the branches A ~ and have 
the asymptotic forrnA~ = 3(4X) -1 + O(X-4),A~ = (2L/13) y2 + O(1) as X ---> 0.. The curve of the amplitudes 
B÷(X, 13) has a unique global minimum with respect to ~: B+~(13) = B÷(Xm, 13) = 31/213-Va(B+.(13 ) = 
(11/3)1/2(3/(4~))v3, where ~ = 7~ (13) = (5/4)1] 1/3. It can be shown that k,,, > L. since 2t,,,(13)fk.(13) = 

+ 
(10/9)(3/4) 1/3 -~ 1.013. However, the difference is very small. Both branches of the curves B ÷ - B1, 2 
(unlikeA + = + = A 1, 2) are rising. The curve B ] (8~(313)) v2 + O(X -5/2) corresponds to the falling branch 
A~ and the rising branch B~- = (2k/13) 1/2 + O/(1) also corresponds to the rising branch A~. It follows 
from the estimates which have been presented that B ]  > B~, that is, the curve B~, which goes higher 
than the curve B~ corresponding to the rising branch A ~, corresponds to the falling branchA ~. A more 
accurate construction of the asymptotic formsA] ~, 2(X, 13), B~, 2(X, 13) is not necessary for reasons which 
will be explained in Section 4. 

Thus, by analysing the estimates obtained forA0 +, A ÷, B ÷, a conclusion may be drawn concerning 
their limiting behaviour when the frequency detuning I X I increases. The curve Ao-as X ---> oo, and the 

+ + 1 • 4- + 1/3 branchesA01,A 1 for X ---> o. have the asymptotic form O(I ~. I- ). The curves A0, A02, B1 = (8L/(313)) 
in the leading term of the asymptotic form and the curvesA-, B-, A~, B~ = (2~13) 1/3, that is, they lie 
below the above-mentioned curves. This grouping of curves in a close neighbourhood is clearly observed 
in a graphical analysis of the amplitude-frequency characteristics (see Fig. 1). 

In conclusion, we note that all the resonance curves are similar in the following sense. We carry out 
a transformation of the variables A and B and the argument X using the formulae 

a = U13 -~ ,  B = V~ -~ ,  X = X13 ~,  13 > 0 (3.10) 

The equations for determiningA0(~., 13) (3.6) orA(~., 13), B(X, 13) > 0 (3.7), (3.8) are then reduced to 
a form in which 13_ :--- 1, A_ = U, B = V, X = Z and it is therefore sufficient to construct the universal 
curves U~(Z) or U+(Z), I~(Z ). The required characteristics for an arbitrary 13 > 0 are obtained according 
to (3.10) 

A(X, 13)= U(k13-~)13 -Y3, B(~.,13)= V(~13 -~1 ~-~ (3.11) 

and, in practice, thi:s may therefore be restricted to the construction and analysis of  the curvesA(~., 1) 
B(E, 1) which are s]hown in Fig. 1. The analysis performed above was carried out in accordance with 
tradition and for clarity. 

According to (3.11), all the characteristic points as 13 ---> oo move away with respect to X and descend 
below the ordinate axis. On the other hand, when 13 ~ 0, they approach the ordinate axis and increase 
without limit (with respect to A and B). The scale factor is equal to 13 -lr3. Note that, on the basis of  
(3.10) and (3.11), it is possible to construct curves for any 13 if they are known for a certain fixed value. 

It is of  theoretical and practical interest to investigate the Lyapunov stability of the time-independent 
modes of vibration which have been constructed and also to model the trajectories in the neighbourhood 
of these motions using the exact and averaged equations of motion. 

4. I N V E S T I G A T I O N  OF THE STABILITY OF STEADY F O R C E D  
V I B R A T I O N S  

4.1. Preliminary remarks 
We will investigate the stability of the steady oscillations using the first Lyapunov method [9]. To do 

this, we calculate the characteristic exponents of the corresponding system in variations. If only plane 
vibrations (b - 0) are considered, then it is generally known [4, 9] that the steady vibrations 
corresponding to the resonance curveA ~2(X, 13) are unstable (a "saddle"-type instability). Critical points 
of the "centre" type correspond to the curvesA0(g, 13),A ~1(~,, 13) in the linear approximation. The occur- 
rence of a linear dissipation which may be as small as desired (of the order of 8 2, for example) leads 
to the asymptotic stability of these steady vibrations. The critical point for the joining of the branches 
A~- I and A ~  leads to a double zero characteristic exponent with a single elementary divisor which 
corresponds to instability. The occurrence of dissipation of the order of e requires a separate study. 

We shall now investigate the stability of steady vibrations in the linear approximation in the case of 
the spatial model which is described by system (3.3). 
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4.2. Stability of plane steady vibrations under spatial perturbations 
The averaged equations (3.5) are not suitable for analysing the stability of plane vibrations (B - 0) 

since the phase of ¥ is undefined and, instead of the degenerating substitution (3.4), we therefore 
transform, in the case of b, b, to osculating variables of the Van der Pol type [10, 11] 

a = Acos(gt +0), ti = -Agsin(gt  +0), g = 1 +e~, 

b = r cos gt + u sin gt, /~ = - r g  sin gt + ug cos gt (4.1) 

On differentiating relations (4.1), by virtue of (3.3) and averaging with respect to t, we obtain, instead 
of (3.5) the equations forA,  0, r, u in the slow time x = et 

A = - ~ sin 0 - (6 / 8) AB2 sin 28, B 2 = r 2 + u 2 

= -X - (2A)  -l cos0+ (36 / 8)A 2 +(6/4)B2 (1 + ~cos  28) 

= -Z,u + (6 / 8) 32 [ - r  sin 20 + u(1 + 2 sin 2 0)] + (36 / 8)uB 2 

u :  ~,r-(6/8)A2[r(1 + 2cos 2 0 ) -us in  20] - (36/8) rB 2 

8 = ~ t - 0 ,  Bcos~=r,  B s i n ¥ = - u  

(4.2) 

The steady-state solution of system (4.2) which corresponds to plane vibrations, has the form 0 = 0, 
~; A0(~L, 6) A~(X, A + = [3), 01, 2( ~., 13) and the variables r = u = 0. The characteristic equation for the 
corresponding system in variations is biquadratic with respect to the exponents of/) and, moreover, it 
has the form 

~ ( p )  = Q~(p2)Q~(p2) = O, ~ -- ~A6'0~,6) (4.3) 

Q~(p2) = p2 +(8A~)-'(2+2~), Q~(p2)= p2 +(8A~)-l(2:i:~) 

It follows from (4.3) that steady plane ("in phase") vibrations (0 = 0) lose stability ("saddle") when 
> 2. When ~ < 2, the characteristic exponents are pure imaginary ("centre"). The corresponding value 

t In rmu 6 with the minus  sign) ~,(l~) ~' (6) 1/4(1~/2) We now of ~(l~) is calcula ed us" g fo la ( 3 . )  ( " " : _ 1/3 
consider the fact that this value of 7~ is critical: when k > ~,*, the possibility of spatial vibrations (B > 
0) appears (see Section 3.3). Furthermore, according to (4.3), "antiphase" vibrations (0 = n) lose stability 

+ 1/3 + + when .,~ i> 2/3, that is, A u,"t~,r,B~ i> ,(2/3Ft~,, . Such are the values of the ,:noints of the curve.~ A ,,,.,~," A ~,,~,(~,, 
1/3 -r -r .I~ >~ 2 3 The valuesA 7% satis the converse ine uali • A ~, < 2/3 ~, > 13) ~ ( / [3) . 01(13) fy 1,3 q ty. m(,1~) ( 13) ( k0(13)). 

These curves exist when ~ t> ~([I) = (3/4)(313/2) r and ~0 > ~.* and the stability condition is satisfied 
for them. Thus, the domains of stability (in the linear approximation) and the instabilities of the steady 
plane vibrations of a string in the whole of the domain I ~. I < ~, 1~ > 0 with respect to spatial perturbations 
have been completely determined. 

4.3. Stability of spatial steady-state vibrations 
The characteristic equation for the system in variations which corresponds to the stationary points (see 
(3.7)) of system (3.5) is also of biquadratic form 

~(p )=s2+ks+h=O,  s=p  2 (4.4) 

k =k  ~ -= (4A2) -I +(3f~/8)A+_(618)A-IB 2 + 

+(62 / 4)A2B 2, h = h ~ - [(3 / 64)A -2 + (6 / 16)3162A2B2 

The coefficients k and h are defined according to the identity in (4.4)• As previously, the upper sign 
in A ~- corresponds to 0 = 0 and the lower sign to 0 = ~. In order that the roots sl, 2 of the quadratic 
equation should be real and negative, it is necessary and sufficient that all of the inequalities k > 0, 
h > 0, d = k 2 - 4h > 0 should be satisfied. 

We now consider the "in-phase" vibrations and, for the coefficients k-, h-, d-, we obtain the 
expressions 
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k -  = ( ~ 2 / 4 ) A 4 > 0 ,  h - = ( 1 / 6 4 ) ( 3 + 4 ~ ) l ~ 2 B  2 > 0  

d -  = ~(2A) ' -4(~ 3 - 4~ 2 + 5~ + 6) > 0, ~ > 2 (4.5) 

A=A-(Z,~), B=B-(~,,[I), ~=[~A 3 

The inequality d- > 0 when ~ > 2 follows immediately if we make the substitution ~ = 2 + ~, ~ > 0 
and a third-order polynomial with positive coefficients is obtained for ~. So, the steady spatial "in-phase" 
vibrations are always stable in the first approximation. The presence of a relatively small linear dissipation 
will lead to asymptotic stability. If the dissipation is of the order of e, then the analysis performed above 
needs to be corrected to take account of this perturbation [6, 8, 9]. 

We will now investigate the roots of Eq. (4.4) with the plus sign (A+(p) = 0) which corresponds to 
0 = x. For the co,~fficients k +, h +, d +, we obtain the expressions 

k + = (62 / 4)A 4 > 0, h + = (64A2)  -t ( 3 -  4~)}2A2B 2 

d + = ~ (2A) -4 (~  3 + 4~ 2 + 5 ~ -  6), ~ > 0 (4.6) 

A =  At+,2(~,,~), B =  B~2(jk,~), ~ = [ ~ 3  

It immediately follows from the expression for h + that vibrations with amplitudesA ~, B~, for which 
> g. = 3/4 are ,:xponentially unstable (a "saddle") since h~ < 0. The branchesA~, ,B~ for which 

< ~., lead to the iinequality h~ > 0. For the stability of vibrations with amplitudes A~, B~ in the first 
approximation, it is sufficient that the cubic polynomial in ~ in (4.6) should be positive when ~+< ~., 
that is, q~(~) = ~3 + 4~2 + 5~ - 6 > 0. By the direct substitution g = ~. = 3/4, we can show that 9 1(3/4) 
= 27/64 > 0. However, a root of the equation q~(g) = 0, which is approximately equal to ~ - 0.72, 
exists close to this value and 9~(~) < 0 when ~ < ~ .  Hence, the stability of the steady "antiphase" 
vibrations holds in the extremely narrow domain 0.75 < ~ -<< 0.72. This domain is represented in the 

vertical in a small half-neighbourhood of the cuspidal point X.. 
Hence, a picture of the plane and spatial non-linear vibrations of a string has been completely con- 

structed in terms of the parameters of the problem X and ~, and their Lyapunov stability has been 
investigated. Comparison with experimental data confirms the qualitative agreement of the results. 
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